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1 Introduction to Image Super-Resolution

Images with high resolution (HR) are always desired and often required, in most

electronic imaging applications. HR means that pixel density within an image is

high, and therefore an HR image can offer more details. Fig. 1 is an illustration of

how the same image might appear at different pixel resolutions, if the pixels were

poorly rendered as sharp squares (normally, a smooth image reconstruction from

pixels would be preferred, but for illustration of pixels, the sharp squares make the

point better).

(a) 32× 32 (b) 64× 64 (c) 128× 128 (d) 256× 256 (e) 512× 512

Figure 1: Illustration of the same image at different pixel resolution.

The more details that can be provided by an HR image may be critical in various

applications. For example, it is very helpful for a doctor to make a correct diagnosis

based on HR medical images. In astronomy, an object can be easily distinguished

from similar ones using HR satellite images. In computer vision, the performance of

pattern recognition can be improved if an HR image is provided. As is known, since

the 1970s digital images are typically captured by a charge-coupled device (CCD)

or by a CMOS image sensor. Although these sensors are suitable for most imaging

applications, the current resolution level and consumer price will not satisfy the future

demand. For example, people want an inexpensive HR digital camera/camcorder, and

scientists often need a very HR level close to that of an analog 35 mm film that has
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no visible artifacts when an image is magnified. As a result, approaches to increase

the current resolution level are needed.

The most direct solution to increase spatial resolution is to reduce the pixel size

(i.e., increase the number of pixels per unit area) by sensor manufacturing techniques.

As the pixel size decreases, however, the amount of light that can be captured by

each pixel also decreases. This generates something known as shot noise that severely

degrades image quality. Thus, there are limitations of the pixel size reduction without

suffering effects of shot noise.

The current image sensor technology has almost reached this level. Another ap-

proach for enhancing the spatial resolution is to increase the chip size, which leads to

an increase in capacitance [Komatsu 1993]. Since large capacitance makes it difficult

to speed up a charge transfer rate, this approach is not considered effective. The

high cost for high precision optics and image sensors is also an important concern

in many commercial applications regarding HR imaging. Therefore, a new approach

toward increasing spatial resolution is required to overcome these limitations of the

sensors and optics manufacturing technology. One promising approach is to use signal

processing techniques to obtain an HR image (or sequence) from observed multiple

low-resolution (LR) images. Recently, such a resolution enhancement approach has

been one of the most active research areas, and it is called super-resolution (SR)

image reconstruction or simply resolution enhancement in the literature [Park 2003].

The major advantages of the signal processing approach is that it may cost less

and the existing LR imaging systems can be still utilized. SR image reconstruction

has proven to be useful in many practical cases where multiple frames of the same

scene can be obtained, including medical imaging, satellite imaging, and video ap-
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plications. One application is to reconstruct a higher quality digital image from LR

images obtained with an inexpensive LR camera/camcorder for printing or frame

freeze purposes. The SR technique is also useful in medical imaging such as com-

puted tomography (CT) and magnetic resonance imaging (MRI) since the acquisi-

tion of multiple images is possible while the resolution quality is limited. In satellite

imaging applications such as remote sensing, several images of the same area are usu-

ally provided, and the SR technique to improve the resolution of the target can be

considered.

How can we obtain an HR image from multiple LR images? The basic premise

for increasing the spatial resolution in SR techniques is the availability of multiple

LR images that capture different information from the same scene. In SR, typically,

the LR images represent different “looks” at the same scene. That is, LR images are

sub-sampled (aliased) as well as shifted with subpixel precision. If the LR images are

shifted by integer pixel units, then each image contains the same information, and

thus there is no new information that can be used to reconstruct an HR image. If the

LR images have different subpixel shifts from each other and if aliasing is present,

however, then each image cannot be obtained from the others. In this case, the new

information contained in each LR image can be exploited to obtain an HR image.

To obtain different looks at the same scene, some relative scene motions must exist

from frame to frame via multiple scenes or video sequences. Multiple scenes can be

obtained from one camera with several captures or from multiple cameras located in

different positions. These scene motions can occur due to the controlled motions in

imaging systems, e.g., images acquired from orbiting satellites. The same is true of

uncontrolled motions, e.g., movement of local objects or vibrating imaging systems. If

3
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(f) SR

Figure 2: Illustration of sub-pixel shift and LR image superposition. (a) represents
the original image with 16 × 16 pixels, (b) is the level-1 down low resolution image
of (a); every pixel in (b) is the average of four pixels in (a). After shifting all the
pixels in (a) one pixel right, and averaging four pixel values in the shifted (a), then
(c) is the new level-1 down low resolution image. (d) and (e) are similar to (c), and
the difference is the shift directions. The subscripts for (b), (c), (d) and (e) indicate
the shifting direction of the original image. (f) is the superposition of all the low
resolution images (b), (c), (d) and (e) according to their relative position.

4



these scene motions are known or can be estimated within subpixel accuracy and if we

combine these LR images, SR image reconstruction is possible as illustrated in Fig 2.

In the process of recording a digital image, there is a natural loss of spatial resolution

caused by the optical distortions (defocus, diffraction limit, etc.), motion blur due to

limited shutter speed, noise that occurs within the sensor or during transmission, and

insufficient sensor density. Thus, the recorded image usually suffers from blur, noise,

and aliasing effects. Although some SR algorithms cover image restoration techniques

that produce high quality images from noisy, blurred images, the main concern of an

SR algorithm is to reconstruct HR images from undersampled LR images. Therefore,

the goal of SR techniques is to restore an HR image from several degraded and aliased

LR images which is also the main goal of this thesis.

In the following section, we present a brief introduction to wavelet transforms,

with particular focus on Haar wavelet transforms. The various algorithms developed

based on wavelet transforms are discussed in the third section and a summary of the

algorithms developed in this thesis is given in the final section.
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2 Introduction to Wavelet Transforms

Wavelets are a mathematical tool for hierarchically decomposing functions. They

allow a function to be described in terms of a coarse overall shape, plus details that

range from broad to narrow. Regardless of whether the function of interest is an

image, a curve, or a surface, wavelets offer an elegant technique for representing the

levels of detail in the function.

Although wavelets have their roots in approximation theory [Daubechies 1988] and

signal processing [Mallet 1989], they have recently been applied to many problems in

computer graphics. These graphics applications include image editing [Berman 1994],

image compression [DeVore 1992] and image querying [Jacobs 1995]. There are also

some other applications in automatic level-of-detail control for editing and render-

ing curves and surfaces [Finkelstein 1994, Gortler and Cohen 1995], surface recon-

struction from contours [Meyers 1994], fast methods for solving simulation prob-

lems in animation [Liu 1994] and global illumination [Christensen 1995, Gortler 1995,

Schröder 1994].

In this thesis, we want to apply wavelet transforms to the image super-resolution

problem. Before showing the intrinsic relation between super-resolution and wavelet

transforms, we need a brief understanding of wavelet transforms. Since only the

“Haar” wavelet is used in the algorithm discussed in this thesis, we restrict our in-

troduction to the Haar wavelet transform.

The following two subsections are devoted to one-dimensional and two-dimensional

wavelet transforms. The wavelet basis function and matrix representation are also

presented.
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2.1 Haar Wavelet Transform

2.1 Haar Wavelet Transform

The Haar basis has an intrinsic relation with super-resolution, and hence will be

discussed here. In the first following section, we will explain the one-dimensional

wavelet transform in detail, and then follow up with the two-dimensional case.

2.1.1 1D Case

To get a sense for how wavelets work, let’s start with a simple example. Suppose we

are given a one-dimensional “image” with a resolution of four pixels, having values

(5 7 3 1)

We can represent this image in the Haar basis by computing a wavelet transform.

To do this, we first average the pixels together, pairwise, to get the low resolution

image with pixel values

(6 2) .

(6 2) may be a good approximation to (5 7 3 1), but clearly, some infor-

mation has been lost in this averaging process. To recover the original four pixel

values from the two averaged values, we need to store some detail coefficients that

capture the missing information. In this example, we choose −1 for the first detail

coefficient, since the average we computed is 1 more than 5 and 1 less than 7. This

single number allows us to recover the first two pixels of our original four-pixel image.

Similarly, the second detail coefficient is 1, since 2 + 1 = 3 and 2− 1 = 1. Thus, we

have decomposed the original image into a lower resolution (two-pixel) version and

a pair of detail coefficients. Repeating this process recursively on the averages gives

7



2.1 Haar Wavelet Transform

the full decomposition:

Level Resolution Averages Detail coefficients Result
0 4 (5 7 3 1) (5 7 3 1)
1 2 (6 2) (−1 1) (6 2 −1 1)
2 1 (4) (2) (4 2 −1 1)

Here we notice that the averaging operation is performed twice (one is from reso-

lution 4 to 2, and the other is from resolution 2 to 1), and hence the whole operation

described above is referred to as a level-2 transformation. The “average” in each

step is called the “approximation” or “trend” without distinction and the “detail

coefficients” are called “detail”.

Finally, we define the wavelet transform (also called the wavelet decomposition)

of the original four-pixel image to be the single coefficient representing the overall

average of the original image, followed by the detail coefficients in order of increasing

resolution. Thus, for the one-dimensional Haar basis, the wavelet transform of our

original four-pixel image is given by

(4 2 −1 1) .

Note that no information has been gained or lost by this process. The original

image had four coefficients, and so does the transform. Also note that, given the

transform, we can reconstruct the image to any resolution by recursively adding and

subtracting the detail coefficients from the lower resolution versions. Storing the im-

age’s wavelet transform, rather than the image itself, has a number of advantages.

One advantage of the wavelet transform is that often a large number of the detail

coefficients turn out to be very small in magnitude. Truncating, or removing, these

8



2.1 Haar Wavelet Transform

small coefficients from the representation introduces only small errors in the recon-

structed image, giving a form of “lossy” image compression. The lower resolution

image is obtained by discarding all the detail coefficients from some level, and this is

obviously closely related to super-resolution.

To make the above example look more mathematical and general, suppose f is

a row vector of size 2n, and apply the Haar wavelet transform on it once to get the

trend a1 and detail d1 as

f
HWT−−−→ (a1|d1). (2.1)

where a1 and d1 are vectors of size 2n−1; a1 is the level-1 “trend” and d1 is the level-1

detail.

If we continue performing the wavelet transform on a1, we can get

a1 HWT−−−→ (a2|d2), (2.2)

and we can continue the above process until the trend consists of only one element.

The overall process may be depicted as follows:

f
level-1−−−→ (a1|d1)

level-2−−−→ (a2|d2|d1) → · · · level−j−−−−→ (aj|dj|dj−1| · · · |d1). (2.3)

Clearly, an analogues notation can be used if f is a column vector rather than a

row vector.

We have shown how one-dimensional images can be treated as sequences of co-

efficients. Alternatively, we can think of images as piecewise-constant functions on

the half-open interval [0, 1). To do so, we will use the concept of a vector space from

linear algebra. A one-pixel image is just a function that is constant over the entire

9



2.1 Haar Wavelet Transform

interval [0, 1). We’ll let V 0 be the vector space of all these functions. A two-pixel

image has two constant pieces over the intervals [0, 1
2
) and [1

2
, 1). We’ll call the space

containing all these functions V 1 . If we continue in this manner, the space V j will

include all piecewise-constant functions defined on the interval [0, 1) with constant

pieces over each of 2j equal length subintervals.

We can now think of every one-dimensional image with 2j pixels as an element,

or vector, in V j . Note that because these vectors are all functions defined on the

unit interval, every vector in V j is also contained in V j+1 . For example, we can al-

ways describe a piecewise-constant function with two intervals as a piecewise-constant

function with four intervals, with each interval in the first function corresponding to

a pair of intervals in the second. Thus, the spaces V j are nested; that is,

V 0 ⊂ V 1 ⊂ V 2 ⊂ · · ·

Now we need to define a basis for each vector space V j. The basis functions for

the spaces V j are called scaling functions, and are usually denoted by the symbol φ.

A simple basis for V j is given by the set of scaled and translated “box” functions:

φj
i (x) := φ(2jx− i), i = 0, · · · , 2j − 1.

where

φ(x) :=

 1 for 0 ≤ x < 1

0 otherwise.

As an example, Fig. 3 shows the four box functions forming a basis for V 2.

The next step is to choose an inner product defined on the vector space V j.

10



2.1 Haar Wavelet Transform

1/21/21/21/2
0000

0000

1

1

1

1

1

1

1

1

φ2
0 φ2

1 φ2
2 φ2

3

Figure 3: The box basis for V 2.

Consider the “standard” inner product,

〈f |g〉 :=

∫ 1

0

f(x)g(x) dx,

for two elements f, g ∈ V j. We can then define a new vector space W j as the

orthogonal complement of V j in V j+1. In other words, we will let W j be the space of

all functions in V j+1 that are orthogonal to all functions in V j under the chosen inner

product. Informally, we can think of the wavelets in W j as a means for representing

the parts of a function in V j+1 that cannot be represented in V j.

A collection of linearly independent functions ψj
i (x) spanning W j is called a

wavelet. These basis functions have two important properties.

1. The basis function ψj
i of W j, together with the basis function φj

i of V j, form a

basis for V j+1.

2. Every basis function ψj
i of W j is orthogonal to every basis function φj

i of V j

under the chosen inner product.

The wavelets corresponding to the box basis are known as the Haar wavelets,

given by

ψj
i := ψ(2jx− i), i = 0, · · · , 2j − 1,
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2.1 Haar Wavelet Transform

where

ψ(x) :=


1 for 0 ≤ x < 1/2

−1 for 1/2 ≤ x < 1

0 otherwise.

Fig. 4 shows the four Haar wavelets spanning W 2.

1/2

1/2

1/2

1/2
00 00

11 11
11 11

−1−1 −1−1

ψ2
0 ψ2

1 ψ2
2 ψ2

3

Figure 4: The Haar wavelets for W 2.

If we represent the original image (5 7 3 1) as a piecewise-constant function

I(x) on [0, 1), then we can express I(x) as a linear combination of the box functions

in V 2:

I(x) = c20φ
2
0(x) + c21φ

2
1(x) + c22φ

2
2(x) + c23φ

2
3(x).

Note that the coefficients c20, · · · , c23 are just the four original pixel values (5 7 3 1) .

Since

V 2 = V 1 ⊕W 1,

we can rewrite the expression for I(x) in terms of the basis functions in V 1 and W 1,

using pairwise averaging and differencing:

I(x) = c10φ
1
0(x) + c11φ

1
1(x) + d1

0ψ
1
0(x) + d1

1ψ
1
1(x).

These four coefficients are (6 2 −1 1) which are quite familiar. Since V 1 =
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2.1 Haar Wavelet Transform

V 0 ⊕W 0, we can further represent

I(x) = c00φ
0
0(x) + d0

0ψ
0
0(x) + d1

0ψ
1
0(x) + d1

1ψ
1
1(x),

and the four coefficients are just (4 2 −1 1) which is the level-2 wavelet trans-

form of (5 7 3 1) . Instead of using the four usual box functions, we can use

φ0
0(x), ψ

0
0(x), ψ

1
0(x) and ψ1

1(x) to represent the overall average, the broad detail, and

the two types of finer detail possible for a function in V 2. The Haar basis for V j with

j > 2 includes these functions as well as narrower translates of the wavelet ψ(x).

In order to represent the above wavelet transform in matrix form, we define the

level-1 wavelets as

w1
1 =

(
1√
2
,− 1√

2
, 0, 0, · · · , 0

)
w1

2 =

(
0, 0,

1√
2
,− 1√

2
, 0, 0, · · · , 0

)
...

w1
n/2 =

(
0, 0, · · · , 0, 1√

2
,− 1√

2

)
,

(2.4)

and the scaling signals as

v1
1 =

(
1√
2
,

1√
2
, 0, 0, · · · , 0

)
v1

2 =

(
0, 0,

1√
2
,

1√
2
, 0, 0, · · · , 0

)
...

v1
n/2 =

(
0, 0, · · · , 0, 1√

2
,

1√
2

)
.

(2.5)
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2.1 Haar Wavelet Transform

Note that the non-zero numbers for w1
i and v1

i are ± 1√
2
, this is to ensure that

every vector has unit length.

Now stack all the level-1 wavelets together to construct an n
2
× n matrix W as

W =



w1
1

w1
2

...

w1
n/2


(2.6)

and all the level-1 scaling signals to construct an n
2
× n matrix V as

V =



v1
1

v1
2

...

v1
n/2


. (2.7)

Definition The matrix constructed as in Eq. 2.6 is called a Wavelet Matrix.

Definition The matrix constructed as in Eq. 2.7 is called a Scaling Matrix.

Definition In space Rn×n, the level-1 scaling matrix V1 is defined as in Eq. 2.7 of

size n
2
× n, the level-2 scaling matrix V2 is the upper left corner of V1 of the size

n
4
× n

2
. Generally, the level-k scaling matrix Vk is the upper left corner of V1 of size

n
2k × n

2k−1 . Similarly, the level-k wavelet matrix Wk is the upper left corner of the

level-1 wavelet matrix W1 as defined in Eq. 2.6 with the same dimension as Vk.

Using the wavelet matrix and scaling matrix, the level-1 Haar wavelet transform

14



2.1 Haar Wavelet Transform

of a column vector f can be written in matrix form as:

a1 = V1 · f

d1 = W1 · f

or more compactly as  a1

d1

 =

 V1

W1

 · f

Similarly, if f is a row vector, a1 = f ·VT
1 and d1 = f ·WT

1 , or more compactly

as (a1, d1) = f · (VT
1 ,W

T
1 ).

Theorem 2.1 The level-1 Haar wavelet transform of a column vector f ∈ Rn can be

written as

HWT(f) =

 a

d

 =

 V

W

 · f.

where V and W are the scaling and wavelet matrices as defined in Eq. 2.7 and Eq. 2.6,

respectively. If f is a row vector, then

HWT(f) = (a, d) = f · (VT ,WT ).

Theorem 2.2 If V,W ∈ R
n
2
×n, and V is the scaling matrix, and W is the wavelet

matrix, then VTV + WTW = I
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2.1 Haar Wavelet Transform

Proof Since

W =



w1

w2

...

wn/2


and

V =



v1

v2

...

vn/2


according to Eq. 2.6 and Eq. 2.7 (note that we droped the superscripts of the w and

v vectors to simplify the notation), it follows that

WT =

(
wT

1 wT
2 · · · wT

n/2

)
(2.8)

and

VT =

(
vT

1 vT
2 · · · vT

n/2

)
. (2.9)
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2.1 Haar Wavelet Transform

It follows that,

VTV + WTW

=

(
vT

1 · · · vT
i · · · vT

n/2

)
·



v1

...

vi

...

vn/2


+

(
wT

1 · · · wT
i · · · wT

n/2

)
·



w1

...

wi

...

wn/2


= vT

1 v1 + · · ·+ vT
i vi + · · ·+ vT

n/2vn/2 + wT
1 w1 + · · ·+ wT

i wi + · · ·+ wT
n/2wn/2

= (vT
1 v1 + wT

1 w1) + · · ·+ (vT
i vi + wT

i wi) + · · ·+ (vT
n/2vn/2 + wT

n/2wn/2).

(2.10)
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2.1 Haar Wavelet Transform

Because

vT
i vi =



1 · · · 2i− 2 2i− 1 2i 2i+ 1 · · · n

1 0 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
... . .

. ...

2i− 2 0 · · · 0 0 0 0 · · · 0

2i− 1 0 · · · 0 1
2

1
2

0 · · · 0

2i 0 · · · 0 2
2

1
2

0 · · · 0

2i+ 1 0 · · · 0 0 0 0 · · · 0

2i+ 2 0 · · · 0 0 0 0 · · · 0
...

... . .
. ...

...
...

...
. . .

...

n 0 · · · 0 0 0 0 · · · 0



(2.11)

and

wT
i wi =



1 · · · 2i− 2 2i− 1 2i 2i+ 1 · · · n

1 0 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
... . .

. ...

2i− 2 0 · · · 0 0 0 0 · · · 0

2i− 1 0 · · · 0 1
2

−1
2

0 · · · 0

2i 0 · · · 0 −2
2

1
2

0 · · · 0

2i+ 1 0 · · · 0 0 0 0 · · · 0

2i+ 2 0 · · · 0 0 0 0 · · · 0
...

... . .
. ...

...
...

...
. . .

...

n 0 · · · 0 0 0 0 · · · 0



, (2.12)
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2.1 Haar Wavelet Transform

we obtain,

vT
i vi + wT

i wi =



1 · · · 2i− 2 2i− 1 2i 2i+ 1 · · · n

1 0 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
... . .

. ...

2i− 2 0 · · · 0 0 0 0 · · · 0

2i− 1 0 · · · 0 1 0 0 · · · 0

2i 0 · · · 0 0 1 0 · · · 0

2i+ 1 0 · · · 0 0 0 0 · · · 0

2i+ 2 0 · · · 0 0 0 0 · · · 0
...

... . .
. ...

...
...

...
. . .

...

n 0 · · · 0 0 0 0 · · · 0



. (2.13)

Finally,

VTV + WTW =

(vT
1 v1 + wT

1 w1) + · · ·+ (vT
i vi + wT

i wi) + · · ·+ (vT
n/2vn/2 + wT

n/2wn/2) = I. (2.14)

Definition The level-1 inverse Haar wavelet transform of a column vector a

d


is

IHWT

 a

d

 =
(
VT ,WT

)  a

d

 = VT · a+ WT · d = f.
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2.1 Haar Wavelet Transform

where V and W are the scaling and wavelet matrices as defined in Eq. 2.7 and Eq. 2.6,

respectively.

The level-1 inverse Haar wavelet transform of a row vector (a, d) is

IHWT(a, d) = (a, d) ·

 V

W

 = aV + dW = f.

This definition of inverse Haar wavelet transform is an immediate result of the

Theorem 2.2.

Theorem 2.3 Let Vk,Wk ∈ R
n

2k× n

2k−1 be the level-k scaling and wavelet matrix in

Rn×n, then the level-k Haar wavelet transfrom of f ∈ Rn is performed as

f
level-1 HWT−−−−−−−→

 V1

W1

 f
level-2 HWT−−−−−−−→


V2V1

W2V1

W1

 f

→ · · · level-k HWT−−−−−−−→



VkVk−1 · · ·V1

WkVk−1 · · ·V1

...

W3V2V1

W2V1

W1


f

A schematic illustration of the 1D wavelet transform can be shown in Fig. 5. The

wavelet transform only acts on the “trend” which is shown as the shaded region in

Fig. 5. The “trend” is always cut into two pieces, and this process can continue until
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2.1 Haar Wavelet Transform

Figure 5: Schematic illustration of 1D wavelet transform. The shaded area represents
the “trend”.

there is only one element left in the “trend”.

The inverse multilevel Haar wavelet transform is just the inverse procedure of the

multilevel forward wavelet transform. It combines the “trend” and detail at the same

level to get the “trend” for the lower level. Continue this process until all the “trend”

and “detail” components are combined.

2.1.2 2D Case

In the 2D case, it is a little different since now we have a square matrix instead of

a vector. There are basically two approaches to do wavelet transforms on a square

matrix. The first approach is to do wavelet transforms on each row first, and then do

wavelet transforms on each of the resulting columns. As a result, the “trend” stays in

the upper-left corner of the matrix. Another approach is to alternate between rows

and columns. That is, begin with a wavelet transform on the first row, and then do a

wavelet transform on the first column, then continue with wavelet transforms on the

second row and the second column, so on and so forth. Finally, the “trend” still lives
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2.1 Haar Wavelet Transform

in the upper left corner of the matrix, and all the other elements are the “detail” of

the matrix.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

M

cV1

cA1 cH1

cD1

cA2 cH2

cV2 cD2

cA3 cH3 cA4

cV3 cD3

cH4

cV4 cD4

Figure 6: Schematic illustration of a 2D wavelet transform. The shaded area repre-
sents the “trend”. (a) is the original matrix. After applying the wavelet transform
on each row of the original matrix, (b) is obtained. Applying the wavelet transform
on each column in the matrix as shown in (b), (c) is then generated. (c) is the final
matrix of the wavelet transform of the matrix in (a). Continue the wavelet transform
on the “row” and “column” of the trend in (c), then (d) and (e) are obtained in order.
The overall process from (a) to (c) is shown as (f) to (g). The process from (c) to (e)
is shown as (g) to (h). The wavelet transform on a matrix can continue to a third
level (from (h) to (i)) and fourth level (from (i) to (j)) and even more levels.

A schematic illustration of the 2D wavelet transform can be shown in Fig. 6 and

its application on a real 2D image is shown in Fig. 7.

In matrix representation, let V and W be the scaling and wavelet matrix, then

the level-1 Haar wavelet transform of a square matrix M can be written as:

M
HWT−−−→

 V

W

M
(
VT ,WT

)
=

 VMVT VMWT

WMVT WMWT

 . (2.15)

In Matlab, the output of dwt2(M) is four small matrices, [cA,cH,cV,cD]. In the

22



2.1 Haar Wavelet Transform

(a) (b) (c) (d)

Figure 7: Schematic illustration of 2D wavelet transforms on an image. (a) is the
original image, (b) is the original level-1 wavelet transformed image in (a), (c) is an
amplitude adjustment of (b) to match the same brightness of (a), and (d) is the level-2
wavelet transform of the image in (a) with adjusted amplitude.

representation of V,W matrices,

cA = VMVT (2.16)

cH = VMWT (2.17)

cV = WMVT (2.18)

cD = WMWT . (2.19)

The inverse wavelet transform of the matrix

 cA cH

cV cD

 is

 cA cH

cV cD

 IDWT−−−→ (
VT ,WT

)  cA cH

cV cD


 V

W

 = M (2.20)

Combining the forward and inverse wavelet transforms, we can get an identity:

M =
(
VTV + WTW

)
M

(
VTV + WTW

)
, (2.21)
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2.1 Haar Wavelet Transform

Recall that from Theorem 2.2, VTV + WTW = I.
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3 Wavelet Based Image Super-Resolution

3.1 Previous Work

Super-resolution is basically a process by which one gains spatial resolution in return

for temporal bandwidth which refers to the availability of multiple non-redundant

images of the same scene. Lukosz [Lukosz 1966, Lukosz 1967] was first to realize

this process. The problem has been an active research area since the seminal work by

Tsai and Huang [Tsai and Huang 1984] which considers the problem of reconstructing

a resolution enhanced image from a sequence of low resolution (LR) images of a

translated scene. Various algorithms have been developed in super-resolution and

here we just categorize them into two main divisions - frequency domain and spatial

domain.

3.1.1 Frequency Domain Methods

Frequency domain methods are utilized in a large class of SR algorithms. These

methods are based on three fundamental principles:

1. the shifting property of the Fourier transform (FT)

2. the aliasing relationship between the continuous Fourier Transform (CFT) and

the discrete Fourier transform (DFT)

3. the original scene is band-limited.

These properties allow the formulation of a system of equations relating the aliased

DFT coefficients of the observed images to samples of the CFT of the unknown scene.

These equations are solved yielding the frequency domain coefficients of the original
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3.1 Previous Work

scene, which may then be recovered by inverse DFT. In this process, a linear sys-

tem is formed and various least squares methods [Kim 1990, Tekalp 1992, Bose 1993,

Kim and Su 1993] have been proposed to solve the linear system.

Techniques based on the multichannel sampling theorem [Brown 1981] have also

been proposed [Ur and Gross 1992]. This technique is fundamentally a frequency

domain method relying on the shift property of the Fourier transform to model the

translation of the source image, even though they are implemented in the spatial

domain.

Frequency domain SR methods provide the advantages of theoretical simplicity

and low computational complexity. In addition, they are highly amenable to parallel

implementation and exhibit an intuitive de-aliasing SR mechanism. Disadvantages

include the limitation to global translational motion and space invariant degradation

models (necessitated by the requirement for a Fourier domain analog of the spatial

domain motion and degradation model) and limited ability for inclusion of spatial

domain a-priori knowledge for regularization. Another limitation of the frequency

domain method is the need to solve a linear system, no matter what kind of variational

least squares method is used.

3.1.2 Spatial Domain Methods

Conjugate to frequency domain methods, the spatial domain methods are another

large class of algorithms for reconstructing super-resolution images.

The iterated backprojection method is a widely used iterative method in the

spatial domain. Given an SR estimate ẑ and the imaging model H, it is possible

to simulate the LR images Ŷ as Ŷ = Hẑ. Iterated backprojection (IBP) procedures
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3.1 Previous Work

update the estimate of the SR reconstruction by back-projecting the error between the

jth simulated LR image Ŷ(j) and the observed LR images Y via the backprojection

operator HBP which apportions “blame” to pixels in the SR estimate ẑ(j). Typically

HBP approximates H−1. Algebraically,

ẑ(j+1) = ẑ(j) + HBP
(
Y − Ŷ(j)

)
= ẑ(j) + HBP

(
Y −Hẑ(j)

)
. (3.1)

Eq. 3.1 is iterated until some error criterion dependent on Y, Ŷ(j) is minimized.

Application of the IBP method may be found in [Irani and Peleg 1993]. IBP requires

that the SR reconstruction match the observed data. Unfortunately, since SR is an

ill-posed inverse problem, the SR reconstruction is not unique. In addition, inclusion

of a-priori constraints is not easily achieved in the IBP method.

Stochastic methods (Bayesian in particular) are also applied to the image super-

resolution problem. Stochastic methods, which treat the SR reconstruction as a

statistical estimation problem, have rapidly gained prominence since they provide

a powerful theoretical framework for the inclusion of a-priori constraints necessary

for satisfactory solution of the ill-posed SR inverse problem. The observed data Y,

noise N and SR image z are assumed stochastic. The Maximum A-Posteriori (MAP)

approach to estimate z seeks the estimate ẑMAP for which the a-posteriori probability,

Pr{z|Y} is a maximum. Since Y = Hz+N, the likelihood function is determined by

the PDF of the noise as Pr{Y|z} = fN(Y−Hz). It is common to use Markov random

field (MRF) image models as the prior term Pr{z}. Under typical assumptions of

Gaussian noise the prior may be chosen to ensure a convex optimization enabling

the use of descent optimization procedures. Examples of the application of Bayesian

methods to SR reconstruction may be found in [Schultz 1996] using a Huber MRF
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and [Cheeseman 1996, Hardie 1997] with a Gaussian MRF.

Maximum likelihood (ML) estimation has also been applied to SR reconstruc-

tion [Tom 1994]. ML estimation is a special case of MAP estimation with no prior

term. Since the inclusion of a-priori information is essential for the solution of ill-

posed inverse problems, MAP estimation should be used in preference to ML.

A major advantage of the Bayesian framework is the direct inclusion of a-priori

constraints on the solution, often as MRF priors which provide a powerful method

for image modeling using (possibly non-linear) local neighbor interaction. MAP es-

timation with convex priors provides a globally convex optimization model, ensuring

solution existence and uniqueness, and allowing application of efficient descent op-

timization methods. Simultaneous motion estimation and restoration is also possi-

ble [Hardie 1997]. The rich area of statistical estimation theory is directly applicable

to stochastic SR reconstruction methods.

There are some other well established methods such as set theoretical recon-

struction methods [Tom 1996, Patti 1997, Eren 1997], hybrid ML/MAP/POCS meth-

ods [Schultz 1996, Elad 1997], optimal and adaptive filtering and Tikhonov-Arsenin

regulation [Patti 1998] etc. applied in image super-resolution.

Spatial domain SR reconstruction methods offer important advantages in terms

of flexibility, but they are computationally more expensive and more complex than

frequency domain methods.

In recent years, another class of algorithms based on wavelet transforms have

been developed [Nguyen 2000, Bose 2004, Shen 2004, El-Khamy 2005, Chang 2006,

Watanabe 2006].

Super-resolution involves two key steps - registration and reconstruction. Most of
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3.2 Intuitive Algorithm

the proposed algorithms separate these two steps, and solve each step independently.

On the other hand, some algorithms have been developed to couple these two steps

and achieve some very good results [Chung 2006]. In this thesis, we are just focusing

on the reconstruction step.

3.2 Intuitive Algorithm

In this section, an intuitive idea for wavelet based super-resolution is applied to 1D

curves and 2D images and a schematic algorithm is also presented.

3.2.1 1D Curve

Suppose we have two low resolution 1D curves L0 and L1 at resolution n. For example,

suppose the original image sample is known as S, of resolution 2n, L0 can be just

the down sampling image of S. To get another non-trivial low resolution image L1,

we can shift S one pixel forward and down sample. One of the most intuitive ideas

to perform super-resolution is to superimpose L0 and L1 according to their known

relative positions (R0 and R1), then average the shifted L0 and L1 to get an initial

guess S0 of the original curve S. It is obvious that S0 is unlikely be the same as S. As

a result, some updating schemes must be applied to refine the initial guess S0. Since

S0 is a guess or approximation of S, it contains more information than both L0 and

L1. It should be possible to extract some information about L0 from S0. According to

the relation between wavelet transforms and super-resolution, we can perform a Haar

wavelet transform on S0 to get the approximation A0 and detail D0 of S0. Recall the

generation of L0 is just the level-1 approximation of S. In other words, if we apply the

wavelet transform to S, L0 is the level-1 approximation, but the detail is unknown.
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3.2 Intuitive Algorithm

Similarly, if we perform a wavelet transform on the one-pixel shifted S, we will get

L1, again without the detail. Note that because L0 is the exact approximation of S,

and D0 may contain some information about the lost detail, we can combine them

together and perform the inverse wavelet transform to try to update S0. Combining

the results from L0 and L1, we can update S0 to S1 and continue the update until

Si+1 is close enough to Si.

The detailed algorithm of the above intuitive idea is sketched in Fig. 8 (a). The

algorithm is applied to a simple example. As seen in Table 1, after about 50 steps,

the result is quite close to the true image.

Table 1: Test of the intuitive algorithm on a simple 1D curve.
ITER a1 a2 a3 a4 a5 a6 ITER a1 a2 a3 a4 a5 a6

0 0.00 2.00 4.00 6.00 8.00 0.00 25 0.00 2.03 3.95 6.05 7.97 0.00
1 0.00 2.00 4.00 6.00 5.50 0.00 26 0.00 2.03 3.95 6.05 7.97 0.00
2 0.00 2.00 4.00 6.63 6.75 0.00 27 0.00 2.03 3.96 6.04 7.97 0.00
3 0.00 2.00 3.84 6.63 7.22 0.00 28 0.00 2.02 3.96 6.04 7.98 0.00
4 0.00 2.04 3.77 6.55 7.45 0.00 29 0.00 2.02 3.97 6.03 7.98 0.00
5 0.00 2.08 3.74 6.47 7.59 0.00 30 0.00 2.02 3.97 6.03 7.98 0.00
6 0.00 2.10 3.73 6.40 7.68 0.00 31 0.00 2.02 3.97 6.03 7.98 0.00
7 0.00 2.12 3.74 6.35 7.74 0.00 32 0.00 2.02 3.98 6.02 7.98 0.00
8 0.00 2.13 3.75 6.31 7.78 0.00 33 0.00 2.01 3.98 6.02 7.99 0.00
9 0.00 2.12 3.77 6.27 7.81 0.00 34 0.00 2.01 3.98 6.02 7.99 0.00

10 0.00 2.12 3.79 6.24 7.84 0.00 35 0.00 2.01 3.98 6.02 7.99 0.00
11 0.00 2.11 3.80 6.21 7.86 0.00 36 0.00 2.01 3.98 6.02 7.99 0.00
12 0.00 2.11 3.82 6.19 7.88 0.00 37 0.00 2.01 3.98 6.02 7.99 0.00
13 0.00 2.10 3.84 6.17 7.89 0.00 38 0.00 2.01 3.99 6.01 7.99 0.00
14 0.00 2.09 3.85 6.15 7.90 0.00 39 0.00 2.01 3.99 6.01 7.99 0.00
15 0.00 2.08 3.86 6.14 7.91 0.00 40 0.00 2.01 3.99 6.01 7.99 0.00
16 0.00 2.08 3.88 6.13 7.92 0.00 41 0.00 2.01 3.99 6.01 7.99 0.00
17 0.00 2.07 3.89 6.11 7.93 0.00 42 0.00 2.01 3.99 6.01 7.99 0.00
18 0.00 2.06 3.90 6.10 7.94 0.00 43 0.00 2.01 3.99 6.01 7.99 0.00
19 0.00 2.06 3.91 6.09 7.94 0.00 44 0.00 2.00 3.99 6.01 8.00 0.00
20 0.00 2.05 3.92 6.08 7.95 0.00 45 0.00 2.00 3.99 6.01 8.00 0.00
21 0.00 2.05 3.93 6.08 7.95 0.00 46 0.00 2.00 3.99 6.01 8.00 0.00
22 0.00 2.04 3.93 6.07 7.96 0.00 47 0.00 2.00 3.99 6.01 8.00 0.00
23 0.00 2.04 3.94 6.06 7.96 0.00 48 0.00 2.00 4.00 6.00 8.00 0.00
24 0.00 2.03 3.94 6.06 7.97 0.00
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Figure 8: Illustration of intuitive wavelet based super-resolution algorithm applied to
a 1D example (left) and a 2D example (right).
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If we define the error between Si and S as ‖Si − S‖, the convergence of the

algorithm for the above simple example can be shown in Fig. 9. The error is steadily

decreasing as seen from Fig. 9, but about 60 steps are needed for such a simple

example and it is difficult to provide the convergence guarantee for a more general

case.
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Figure 9: 1D level-1 up super-resolution error convergence.

Without worrying about the convergence, the algorithm for a 1D curve can be

easily extended to multilevel super-resolution and it will be described in later sections.

3.2.2 2D Images

The intuitive idea based algorithm works in the 1D case, and the simple idea can be

easily extended to higher dimensions with little modification. As a result, a similar

algorithm for the 2D case is sketched in Fig. 8 (b). In addition, the algorithm for
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super-resolution is not limited to level-1 up, it is suitable for multilevel up super-

resolution as shown in the following examples.

The first example we applied the generalized algorithm to is the “cameraman”.

As shown in Fig. 10 (a), the original image has a resolution of 256 × 256. Four low

resolution images were generated based on the original image. Fig. 10 (b) is one of

the four low resolution images.

(a) HR, 256× 256 (b) LR, 128× 128 (c) SR, 256× 256

Figure 10: 2D level-1 up super-resolution. (a) is the original high resolution image,
(b) is one of the four low resolution images generated from (a), and (c) is the super-
resolution image after about 110 iterations.

After about 110 iterations, a super-resolution image at resolution 256 × 256 is

obtained and shown in Fig. 10 (c) and the error convergence is shown in Fig. 11. As

can be seen, the convergence rate is worse than that in the 1D case, but the error

keeps on decreasing with more and more iteration steps.

Further, the same algorithm is performed to the level-2 up super-resolution as

shown in Fig. 12. In the 2D level-2 case, 16 low resolution images are needed for

recovering the original high resolution image.

The error convergence rate for 2D level-2 up case is shown in Fig. 13. This time

the algorithm converges more slowly than the level-1 up case.
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Figure 11: 2D level-1 up super-resolution error convergence.

(a) HR, 256× 256 (b) LR, 64× 64 (c) SR, 256× 256

Figure 12: 2D level-2 up super-resolution. (a) is the original high resolution image,
(b) is one of the 16 low resolution images generated from (a), and (c) is the super-
resolution image after about 600 iterations.
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Figure 13: 2D level-2 up super-resolution error convergence.

3.3 Matrix Form Algorithm

Although the intuitive algorithm works well for both 1D and 2D images, the problem

remains to understand its convergence behavior. In addition, the algorithm is loosely

organized and not in a simple and elegant mathematical form, though the idea is very

simple. In this section, we will prove some results related to the wavelet and scaling

matrices, show that the intuitive approach in the previous section is equivalent to

a matrix form algorithm, and prove convergence of the algorithm. Further, it can

be shown that the intuitive algorithm or the matrix form algorithm is just a special

form of the “Landweber Iteration” method to solve the linear systems. However,

we will not stop there - a one step solution for the 1D super-resolution problem is

proposed which totally avoids the iteration. Based on the equivalence of the 1D

intuitive algorithm and the 1D matrix form algorithm, the 2D matrix form algorithm

is also developed for both level-1 and multilevel up super-resolution.
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3.3.1 1D and Level-1 Up Super-Resolution

Before presenting some theorems, some definitions are needed.

Definition Let F ∈ Rn×n, k ≥ 0 and

Fi,j =

 1, i = j and (1 + k ≤ i ≤ n− k)

0, otherwise.

Then, F is said to be a filter matrix of order k. For simplicity, a filter matrix of order

1 is simply referenced as a filter matrix.

Proposition 3.1 An order 0 filter matrix is an identity matrix.

Definition A square matrix R is said to be an order d up-shift matrix if

Ri,j =

 1, j = i+ d

0, else.

For example,

R =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


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is an order 1 up-shift matrix. It acts on a vector v = (1 2 3 4)T as

Rv =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


·



1

2

3

4


=



2

3

4

0


.

It is obvious that all the elements in v are shifted one position up and this is the reason

that matrix R is called an up-shift matrix. Note that if d is negative, R actually shifts

all the elements in a vector down, and it is more properly called a down-shift matrix.

For the purpose of generality, these kind of matrices are still called up-shift matrices

but with negative order.

Proposition 3.2 An order 0 up-shift matrix is an identity matrix.

Proposition 3.3 If R ∈ Rn×n is an up-shift matrix of order j (j ≥ 0) and F ∈ Rn×n

is a filter matrix of order k (k ≥ j), then FRTR = F.

Theorem 3.4 (1DL1) Let f ∈ Rn (n is even), and f1 = fn = 0. F ∈ Rn×n is

an order 1 filter matrix. R0,R1 ∈ Rn×n are up-shift matrices of order 0 and 1.

V ∈ R
n
2
×n is the scaling matrix and W ∈ R

n
2
×n is the wavelet matrix. Denote

1. f (0) = 1
2
F

(
RT

0 VTVR0 + RT
1 VTVR1

)
f

2. f (i) = f (0) + 1
2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
f (i−1), ∀i ≥ 1.

Then,

1. f = f (0) + 1
2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
f ,
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2. lim
n→∞

f (i) = f .

Proof 1. Because f ∈ Rn (n is even), and f1 = fn = 0, it follows that

Ff = f.

Further, V is a scaling matrix and W is a wavelet matrix, according to Theo-

rem 2.2 which says that VTV + WTW = I, therefore,

F[RT
0 (VTV + WTW)R0 + RT

1 (VTV + WTW)R1]

= F(RT
0 R0) + F(RT

1 R1) = 2F,

therefore,

1

2
F[RT

0 (VTV + WTW)R0] +
1

2
F[RT

1 (VTV + WTW)R1] = F.

So,

1

2
F[RT

0 (VTV + WTW)R0]f +
1

2
F[RT

1 (VTV + WTW)R1]f = Ff = f.

Since

f (0) =
1

2
F

(
RT

0 VTVR0 + RT
1 VTVR1

)
f,

we see that,

f = f (0) +
1

2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
f.
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2. Denote ǫ(i) = f − f (i), ∀i ≥ 0.

Since

f = f (0) +
1

2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
f

and

f (i) = f (0) +
1

2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
f (i−1),∀i ≥ 1.

We obtain,

ǫ(i) =
1

2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
ǫ(i−1).

Because

1

2
‖F (

RT
0 WTWR0 + RT

1 WTWR1

) ‖
≤ 1

2

(‖FRT
0 WTWR0‖+ ‖FRT

1 WTWR1‖
)

and

‖FRT
0 WTWR0‖ ≤ 1 and ‖FRT

1 WTWR1‖ ≤ 1,

it follows that,

1

2
‖F (

RT
0 WTWR0 + RT

1 WTWR1

) ‖ ≤ 1.

Since

FRT
0 WTWR0 6= FRT

1 WTWR1,

it follows that,

1

2
‖F (

RT
0 WTWR0 + RT

1 WTWR1

) ‖ < 1.
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3.3 Matrix Form Algorithm

Therefore,

‖ǫ(i)‖ < ‖ǫ(i−1)‖.

So,

lim
i→∞

ǫ(i) = 0.

Finally,

lim
i→∞

f (i) = f.

Theorem 3.4 provides an updating scheme to recover the original image and also

guarantees the convergence of the algorithm. This theorem also simplifies the steps in

performing super-resolution, but it is just an abstraction of the intuitive algorithm,

and in the following subsection we will show that it is equivalent to the intuitive

algorithm.

3.3.2 Relation Between the Intuitive and Matrix Form Algorithm

To demonstrate the equivalence of the matrix form algorithm (Theorem 3.4) and the

intuitive algorithm (Fig. 8), we need more definitions.

Definition An n
2
× n matrix D is called a down sampling matrix if D = 1√

2
V where

V is the scaling matrix defined in Eq. 2.7.

For example,

D =


1
2

1
2

0 0 0 0

0 0 1
2

1
2

0 0

0 0 0 0 1
2

1
2


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3.3 Matrix Form Algorithm

is a down sampling matrix. When D acts on a vector

v =



0

2

4

6

8

0


as


1
2

1
2

0 0 0 0

0 0 1
2

1
2

0 0

0 0 0 0 1
2

1
2

 ·



0

2

4

6

8

0


,

it gives a shorter vector

l =


1

5

4

 ,

whose elements are just the pairwise average of the elements of v.

Definition An n
2
× n matrix T is called a trivial expanding matrix if T =

√
2VT

where V is the scaling matrix as defined in Eq. 2.7.
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3.3 Matrix Form Algorithm

For example,

T =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


is a trivial expanding matrix. When T acts on a vector

l =


1

5

4


as 

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


·


1

5

4

 ,
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3.3 Matrix Form Algorithm

it gives a longer vector

l =



1

1

5

5

4

4


.

Proposition 3.5 The trivial expanding matrix is twice of the transpose of the down-

sampling matrix, or T = 2DT .

Proof Since

D =
1√
2
V and T =

√
2VT ,

it clearly follows that

T = 2DT .

Theorem 3.6 The intuitive algorithm shown in Fig. 8 is equivalent to the updating

scheme as:

1. f (0) = 1
2
F

(
RT

0 VTVR0 + RT
1 VTVR1

)
f

2. f (i) = f (0) + 1
2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
f (i−1), ∀i ≥ 1.

as in Theorem 3.4.

Proof The proof will just work through all the steps in the intuitive algorithm and

put each step in the matrix formation. In the end, we will show that the two algo-

rithms are the same.
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3.3 Matrix Form Algorithm

1. Shift Forward

h(0) = R0f and h(1) = R1f where R0 and R1 are up-shift matrices.

2. Down Sampling

l(0) = Dh(0) and l(1) = Dh(1) where D is the down sampling matrix. Plug in

h(0) and h(1) to obtain l(0) = DR0f and l(1) = DR1f .

3. Trivial Expanding

h(0) = Tl(0) = 2DT l(0) = 2DTDR0f

h(1) = Tl(1) = 2DT l(1) = 2DTDR1f

4. Shift Reverse

h(0) = RT
0 Tl(0) = 2RT

0 DT l(0) = 2RT
0 DTDR0f

h(1) = RT
1 Tl(1) = 2RT

1 DT l(1) = 2RT
1 DTDR1f

Because D = 1√
2
V, we get

2DTD = VTV. Thus

h(0) = RT
0 VTVR0f, and h(1) = RT

1 VTVR1f .

5. Merge

f (0) = 1
2

(
h(0) + h(1)

)
= 1

2

(
RT

0 VTVR0 + RT
1 VTVR1

)
f .

6. Filtering f (0) = Ff (0) = 1
2
F

(
RT

0 VTVR0 + RT
1 VTVR1

)
f .

7. Shift Foward

h(0) = R0f
(0), h(1) = R1f

(0).
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3.3 Matrix Form Algorithm

8. Wavelet Transform

a(0) = Vh(0), and a(1) = Vh(1).

d(0) = Wh(0) = WR0f
(0), and

d(1) = Wh(1) = WR1f
(0).

9. Replace

a(0) =
√

2l(0) =
√

2DR0f and a(1) =
√

2l(1) =
√

2DR1f .

10. Inverse Wavelet Transform

h(0) = VTa(0)+WTd(0) = VT
√

2DR0f+WTWR0f
(0) = VTVR0f+WTWR0f

(0)

h(1) = VTa(1)+WTd(1) = VT
√

2DR1f+WTWR1f
(0) = VTVR1f+WTWR1f

(0)

11. Shift Reverse

h(0) = RT
0 h

(0) = RT
0 VTVR0f + RT

0 WTWR0f
(0)

h(1) = RT
1 h

(1) = RT
1 VTVR1f + RT

1 WTWR1f
(0)

Denote A1 = RT
0 VTVR0 and A2 = RT

1 VTVR1

B1 = RT
0 WTWR0 and B2 = RT

1 WTWR1,

then

h(0) = A1f + B1f
(0) and h(1) = A2f + B2f

(0)

12. Merge

f (1) = 1
2

(
h(0) + h(1)

)
= 1

2

[
(A1 + A2) f + (B1 + B2) f

(0)
]
.

13. Filtering

f (1) = Ff (1) = 1
2
F

[
(A1 + A2) f + (B1 + B2) f

(0)
]
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3.3 Matrix Form Algorithm

· · ·

f (i) = 1
2
F

[
(A1 + A2) f + (B1 + B2) f

(i−1)
]

∴ f (i) = f (0) + 1
2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
f (i−1), ∀i ≥ 1 .

Since the intuitive idea is equivalent to the matrix form in the 1D case, and the

intuitive algorithm is a general algorithm for both 1D and 2D image super-resolution,

we derive the 2D matrix form algorithm from the intuitive idea in later sections

without proof. Before presenting the general 2D matrix algorithm, we will show

that the matrix form algorithm is indeed a special form of the Landweber Iteration

algorithm for solving linear systems.

3.3.3 Landweber Iteration

The Landweber iteration method [Goldstein 1964, Baker 1977] is a well known itera-

tion method to solve the linear systems Ax = b, and it is also well known for its slow

convergence rate. Here we show that the 1D matrix form algorithm finally unites

with the Landweber iteration for linear systems.

Proposition 3.7 The 1D level-1 super-resolution algorithm is equivalent to the Landwe-

ber Iteration (ω = 1) with projection F, where F is a order 1 filter matrix.

Proof The Landweber interation with projection for the linear system Ax = b has

the form

xk = P(xk−1 + ωAT rk−1), k = 1, 2, · · · ,

where rk = b− Axk. In the special case, let P = F and ω = 1, then

xk = F(xk−1+AT (b−Ak−1)) = F(xk−1+AT b−ATAxk−1) = F((I−ATA)xk−1+ATAx).
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3.3 Matrix Form Algorithm

In the super-resolution case, A for the linear system is just

 DR0

DR1

 and x = f .

therefore,

ATA =
(
RT

0D
T , RT

1D
T
)  DR0

DR1

 = RT
0D

TDR0 +RT
1D

TDR1.

Because, DTD = 1
2
V TV , we see that, ATA = 1

2

(
RT

0 V
TV R0 +RT

1 V
TV R1

)
, and

thus,

f (0) = FATAf.

Furthermore,

F(I − ATA) =
1

2
F(I −RT

0 V
TV R0) +

1

2
F(I −RT

1 V
TV R1)

and

F = FRT
0R0 = FRT

1R1,

so,

F(I − ATA) =
1

2
F(RT

0 (I − V TV )R0) +
1

2
F(RT

1 (I − V TV )R1)

=
1

2
F(RT

0W
TWR0 +RT

1W
TWR1).

Thus,

f (i) = FATAf + F(I − ATA)f (i−1).
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3.3 Matrix Form Algorithm

3.3.4 1D and Multilevel up Super-Resolution

In Section 3.3.1, the algorithm for 1D level-1 up super-resolution is developed and here

we will generalize the algorithm from level-1 to multilevel up super-resolution. The

generalization is based on the equivalence of the 1D level-1 up matrix form algorithm

and the intuitive algorithm.

Definition In Rn×n, define A1 = V1 and Ak = VkAk−1 (k ≥ 2), where Vk is the

level-k scaling matrix in Rn×n. Similarly, define B1 = W1 and Bk = WkAk−1 (k ≥ 2),

where Wk is the level-k wavelet matrix in Rn×n. Also, define Dk =
∑k

i=1(B
T
i Bi)

Proposition 3.8 In Rm×m, (m = 2n), Im = AT
k Ak + Dk, for all 1 ≤ k ≤ n.

Proof According to Theorem 2.2,

Im = VT
1 V1 + WT

1 W1 = AT
1 A1 + D1,

and

Im/2 = VT
2 V2 + WT

2 W2.

Therefore,

VT
1 V1 = VT

1 Im/2V1 = VT
1

(
VT

2 V2 + WT
2 W2

)
V1,

and thus,

Im = AT
2 A2 + D2.

The above steps can be continuted for n times, and finally,

Im = AT
k Ak + Dk, for all 1 ≤ k ≤ n.
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3.3 Matrix Form Algorithm

Theorem 3.9 Let R0,R1, · · · ,Rk−1 ∈ Rn×n be order 0, 1, · · · , k − 1 up-shift ma-

trices, and let Al and Dl be defined as above. Let F ∈ Rn×n be a filtering matrix

with k zeros in both ends of its diagonal. Then the algorithm for general level-l up

super-resolution for f ∈ Rn can be constructed as following:

1. f (0) = 1
k
F

(∑k
i=1 RT

i AT
l AlRi

)
f

2. f (s) = f (0) + 1
k
F

(∑k
i=1 RT

i DlRi

)
f (s−1)

Matlab code to test level-2 up super-resolution is present below:

n = 64;

f = rand(n,1);

m = 4;

f(1:m) = 0;

f(n-m+1:n) = 0;

F = ones(n,1);

F(1:m) = 0;

F(n-m+1:n) = 0;

% define the shift

R0 = diag(ones(1,n));

R1 = circshift(R0,[-1,0]); R1(n,1) = 0;

R2 = circshift(R1,[-1,0]); R2(n,2) = 0;

R3 = circshift(R2,[-1,0]); R3(n,3) = 0;

clear V1;

clear W1;

foo = [1 1 zeros(1,n-2)];

bar = [1 -1 zeros(1,n-2)];

foo = foo/sqrt(2);

bar = bar/sqrt(2);

for i = 1:n/2

V1(i,:) = foo; foo = circshift(foo,[0,2]);
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3.3 Matrix Form Algorithm

W1(i,:) = bar; bar = circshift(bar,[0,2]);

end

V2 = V1(1:n/4,1:n/2);

W2 = W1(1:n/4,1:n/2);

A1 = V1; D1 = W1;

A2 = V2*A1; D2 = W2*A1;

BA = A2’*A2; BD = D2’*D2 + D1’*D1;

f0 = (R0’*BA*R0 + R1’*BA*R1 + R2’*BA*R2 + R3’*BA*R3)*f.*F/4;

clear error;

pf = f0;

for i = 1:1000

uf = (R0’*BD*R0 + R1’*BD*R1 + R2’*BD*R2 + R3’*BD*R3)*pf.*F/4;

nf = f0 + uf;

pf = nf;

error(i) = norm(f-nf)/sqrt(n);

end

3.3.5 One Step Solution in the 1D Case

Mathematically, it is beautiful to finally rewrite the matrix form algorithm as a

Landweber iteration, but a great simple algorithm will be buried under the well

known “Landweber Iteration” form. After reexamining the original matrix form of

the algorithm as shown in Theorem 3.4, we find the following one step solution for

1D level-1 up super-resolution.

In Theorem 3.4,

f (0) =
1

2
F

(
RT

0 VTVR0 + RT
1 VTVR1

)
f
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and

f (i) = f (0) +
1

2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
f (i−1),∀i ≥ 1.

If we denote

1

2
F

(
RT

0 VTVR0 + RT
1 VTVR1

)
= A

and

1

2
F

(
RT

0 WTWR0 + RT
1 WTWR1

)
= B,

then we have

f (0) = Af

and

f (i) = Af + Bf (i−1), ∀i > 1.

Consequently,

f (1) = Af + Bf (0) = Af + BAf = (I + B)Af,

f (2) = Af + Bf (1) = (I + B + B2)Af,

· · ·

f (i) = (I + B + B2 · · ·+ Bi)Af.

Denote

S =
∞∑
i=0

Bi,

then we can get

f = SAf
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or

f = Sf (0).

As a result, if we are given f (0), and if we can construct S easily, then the problem is

solved. A typical B matrix of size 8× 8 is shown in Eq. 3.2.

B =



0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−0.25 0.50 −0.25 0.00 0.00 0.00 0.00 0.00

0.00 −0.25 0.50 −0.25 0.00 0.00 0.00 0.00

0.00 0.00 −0.25 0.50 −0.25 0.00 0.00 0.00

0.00 0.00 0.00 −0.25 0.50 −0.25 0.00 0.00

0.00 0.00 0.00 0.00 −0.25 0.50 −0.25 0.00

0.00 0.00 0.00 0.00 0.00 −0.25 0.50 −0.25

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00



. (3.2)

The S matrix for very large n, corresponding to the B matrix as shown in Eq. 3.2, is

S =



1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−0.8571 3.4286 −2.8571 2.2857 −1.7143 1.1429 −0.5714 0.1429

0.7143 −2.8571 5.7143 −4.5714 3.4286 −2.2857 1.1429 −0.2857

−0.5714 2.2857 −4.5714 6.8571 −5.1429 3.4286 −1.7143 0.4286

0.4286 −1.7143 3.4286 −5.1429 6.8571 −4.5714 2.2857 −0.5714

−0.2857 1.1429 −2.2857 3.4286 −4.5714 5.7143 −2.8571 0.7143

0.1429 −0.5714 1.1429 −1.7143 2.2857 −2.8571 3.4286 −0.8571

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000


. (3.3)

It is hard to see the pattern of the S matrix as shown in Eq. 3.3, but if all the

elements of the S matrix are multiplied by n− 1 (n = 8 here), then a new matrix S̃

is shown in Eq. 3.4.
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S̃ =



7 0 0 0 0 0 0 0

−6 24 −20 16 −12 8 −4 1

5 −20 40 −32 24 −16 8 −2

−4 16 −32 48 −36 24 −12 3

3 −12 24 −36 48 −32 16 −4

−2 8 −16 24 −32 40 −20 5

1 −4 8 −12 16 −20 24 −6

0 0 0 0 0 0 0 7



. (3.4)

Clearly, S̃ has a regular pattern and it can be simply constructed using the fol-
lowing Matlab code:

S(:,1) = ((n-1):-1:0)’;

S(:,n) = (0:n-1)’;

S(1,2:n) = zeros(1,n-1);

S(n,1:n-1) = zeros(1,n-1);

for i = 1:n

S(i,1) = S(i,1)*(-1)^(i+1);

S(i,n) = S(i,n)*(-1)^(i+n);

end

for i = 2:n-1

for j = 2:i

S(i,j) = 4*(n-i)*(j-1)*(-1)^(i+j);

S(j,i) = S(i,j);

end

end

This S̃ matrix constructing algorithm has been numerically tested but without

mathematical proof.

For 1D multilevel up super-resolution, it is easy to see that they can be processed
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050
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0.5 4.5 0

023
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H0

H1

H2

H3

Figure 14: Decomposition of 1D level-2 up super-resolution problem into two level-1
up process.

as multiple level-1 up super-resolution as shown in Fig. 14. In Fig. 14, the original 1D

image “H0” is shifted left three time to prepare the four level-2 down low resolution

images which have only pixels as shown in the middle. According to their relative

shifting position, these low resolution images can be combined pairwise to get the

level-1 up super-resolution image, and this process can be continued until the original

high resolution image “H0” is obtained.

Using this one step solution, 1D image super-resolution can be solved easily pro-

viding the relative positions are known for all the low resolution images.

3.3.6 2D and Level-1 Up Super-Resolution

Since the 1D matrix form algorithm is equivalent to the intuitive algorithm and the

intuitive idea is a general idea which can be applied easily in the 2D case, the matrix

form of the 2D level-1 super-resolution algorithm can be derived similar to the steps

in Section 3.3.2. Here we skip all the detailed steps and just show the results.

Theorem 3.10 Let M ∈ Rn×n be the original square image, R0 ∈ Rn×n and R1 ∈
Rn×n are two shift matrices. Lij ∈ R

n
2
×n

2 is the ijth low resolution image. V ∈ R
n
2
×n

and W ∈ R
n
2
×n are the scaling and wavelet matrices. Let Pi = VRi, Qi = VRT

i ,
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Si = WRi, Ti = WRT
i ; and further, A = PT

0 P0 + PT
1 P1, B = ST

0 S0 + ST
1 S1,

C = QT
0 Q0 + QT

1 Q1, D = TT
0 T0 + TT

1 T1. Then,

1. Lij = PiMQT
j , i, j = 0, 1

2. M(0) = 1
4
FAMC = 1

4
F

1∑
i,j=0

PT
i LijQj

3. M(s) = M(0) + 1
4
F

[
BM(s−1)C + (A + B)M(s−1)D

]
4. M = lim

s→∞
M(s)

3.3.7 2D and Multilevel Up Super-Resolution

Similar to the 2D level-1 up super-resolution algorithm, the 2D multilevel up super-

resolution algorithm can be derived in the same way, and only the results are shown

in the following theorem.

Theorem 3.11 Let M ∈ Rn×n be the original square image and define A1 = V1,

A2 = V2A1, · · · , Ak = VkAk−1, similarly, B1 = W1, B2 = W2A1, · · · , Bk =

WkAk−1 where k is the down sampling level. Also define Pli = AlRi, Qli =

AlR
T
i , Sli = BlRi, Tli = BlR

T
i . Further, Al =

2k−1∑
i=0

PT
liPli, Bl =

2k−1∑
i=0

ST
liSli,

Cl =
2k−1∑
i=0

QT
liQli, Dl =

2k−1∑
i=0

TT
liTli. Then,

1. Lij = PkiMQT
kj, i, j = 0, 1, · · · , 2k − 1

2. M(0) = 1
4k FAkMCk = 1

4k F
2k−1∑
i,j=0

PT
kiLijQkj

3. M(s) = M(0) + 1
4k F

k∑
l=1

[
BlM

(s−1)Cl + (Al + Bl)M
(s−1)Dl

]
4. M = lim

s→∞
M(s)
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4 Summary

In this thesis, a one step algorithm to solve the 1D image (without blurring) super-

resolution problem with the assumption that the relative positions of all the low

resolution images are known. This algorithm only needs the usual matrix vector

products and no other complicated operations. It is a one step solution and the

solution should be the exact original image. This simple algorithm is based on an in-

tuitive idea to perform image super-resolution. By developing the intuitive algorithm

to the matrix form algorithm, and analyzing the final form, the algorithm is proposed

without mathematical proof. In the 2D image super-resolution case, only a matrix

form iteration algorithm is provided for both level-1 and multilevel up image super-

resolution. The algorithm converges slowly due to the intrinsic similarity between the

algorithm and the Landweber Iteration. Though no one step algorithm is proposed

for the 2D image super-resolution, the 1D algorithm may shine some light on the 2D

case. For example, the S matrix in the 1D case may be used as a preconditioner for

the Conjugate-Gradient method. In addition, if it is possible to convert the 2D image

super-resolution problem to the 1D case, then the one step algorithm can be applied

easily to it and finally solve the problem.
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[Schröder 1994] P. Schröder, S. J. Gortler, M. F. Cohen, and Pat Hanra-

han. Wavelet projections for radiosity. Computer Graphics

Forum 13(June 1994), 141–151.

[Schultz 1996] R. R. Schultz and R. L. Stevenson. Extraction of high-

resolution frames from video sequences. IEEE Trans. IP

5(June 1996), 996–1011.

[Shen 2004] L.X. Shen and Q.Y. Sun. Biorthogonal wavelet system for

high-resolution image reconstruction. IEEE Trans. Signal

Process. 52(2004), 1997–2011.

[Tekalp 1992] A. M. Tekalp, M. K. Ozkan, and M. I. Sezan. Highres-

olution image reconstruction from lower-resolution image

sequences and space-varying image restoration. In IEEE

Int. Conf. Acoustics, volume III of Speech and Signal Pro-

cessing (ICASSP), pages 169–172, San Francisco, CA, Mar

1992.

62



REFERENCES

[Tom 1994] B. C. Tom and A. K. Katsaggelos. Reconstruction of a high

resolution image from multiple degraded mis-registered low

resolution images. In SPIE VCIP, volume 2308, pages 971–

981, Chicago, Sept. 1994.

[Tom 1996] B. C. Tom and A. K. Katsaggelos. An Iterative Algorithm

for Improving the Resolution of Video Sequences. In SPIE

VCIP, volume 2727, pages 1430–1438, Orlando, FL, Mar.

1996.

[Tsai and Huang 1984] R.Y. Tsai and T.S. Huang. Multiframe image restoration

and registration. In R.Y. Tsai and T.S. Huang, editors,

Advances in Computer Vision and Image Processing, vol-

ume 1, pages 317–339. JAI Press Inc., 1984.

[Ur and Gross 1992] H. Ur and D. Gross. Improved resolution from subpixel

shifted pictures. In CVGIP: Graphical Models and Image

Processing, volume 54, pages 181–186, Orlando, FL, Mar.

1992. Academic Press, Inc.

[Watanabe 2006] K. Watanabe, Y. Iwai, H. Nagahara, M. Yachida, and

T. Suzuki. Video synthesis with high spatio-temporal

resolution using motion compensation and image fu-

sion in wavelet domain. LECT NOTE COMPUT SCI

3851(2006), 480–489.

63


